منابع مشابه
A Nonstandard Supersymmetric Kp Hierarchy
We show that the supersymmetric nonlinear Schrödinger equation can be written as a constrained super KP flow in a nonstandard representation of the Lax equation. We construct the conserved charges and show that this system reduces to the super mKdV equation with appropriate identifications. We construct various flows generated by the general nonstandard super Lax equation and show that they con...
متن کاملSupersymmetric Two Boson Equation , Its Reductions and the Nonstandard Supersymmetric KP Hierarchy
In this paper, we review various properties of the supersymmetric Two Boson (sTB) system. We discuss the equation and its nonstandard Lax representation. We construct the local conserved charges as well as the Hamiltoniam structures of the system. We show how this system leads to various other known supersymmetric integrable models under appropriate field redefinition. We discuss the sTB and th...
متن کاملThe nonstandard constrained KP hierarchy and the generalized Miura transformations
We consider the nonstandard constrained KP (ncKP) hierarchy which is obtained from the multi-constraint KP hierarchy by gauge transformation. The second Hamiltonian structure of the ncKP hierarchy can be simplified by factorizing the Lax operator into multiplication form, thus the generalized Miura transformation is obtained. We also discuss the free field realization of the associated W-algebra.
متن کاملq-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy
Using the determinant representation of gauge transformation operator, we have shown that the general form of τ function of the q-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On the basis of these, we study the q-deformed constrained KP (q-cKP) hierarchy, i.e. l-constraints of q-KP hierarchy. Similar to the ordinary constrained K...
متن کاملCalogero-Moser hierarchy and KP hierarchy
In [1], Airault, McKean and Moser observed that the motion of poles of a rational solution to the K-dV or Boussinesq equation obeys the Calogero-Moser dynamical system [2, 3, 4] with an extra condition on the configuration of poles. In [8], Krichever observed that the motion of poles of a solution to the KP equation which is rational in t1 obeys the Calogero-Moser dynamical system. In this note...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Reviews in Mathematical Physics
سال: 1995
ISSN: 0129-055X,1793-6659
DOI: 10.1142/s0129055x95000438